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We propose a deterministic algorithm for approximating a generating partition from a time series using
tessellations. Using data generated by Hénon and Ikeda maps, we demonstrate that the proposed method
produces partitions that uniquely encode all the periodic points up to some order, and provide good estimates
of the metric and topological entropies. The algorithm gives useful results even with a short noisy time series.
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I. INTRODUCTION

The theory of symbolic dynamics is a powerful tool for
the investigation of discrete time dynamical systems. The
main idea is that of apartition, that is, a finite collectionA
of disjoint subsets whose union is the state spaceM. By
identifying eachAPA with a uniquesymbol, we have a
sequence of symbols that correspond to each trajectory of the
original system—the sequence is produced as the evolving
state visits different regions of the partition. This idea is at its
most powerful when the partition is chosen to be agenerat-
ing partition, that is, when the assignment of symbol se-
quences to trajectories is unique, up to a set of measure zero.
Generating partitions have been found to be desirable in ap-
plications such as chaotic communication[1], and in prob-
lems of parameter estimation[2].

As might be expected, generating partitions have often
proven difficult to find. When the dynamical system is de-
fined by a known map, there are methods by which to find
generating partitions using “primary tangencies”[3] and also
by consideration of unstable periodic orbits[4–6]. In cases
where the dynamical system is not fully known, for example,
in the practically important case in which only a time series
of observations is available, there appears to be no previ-
ously published methods for obtaining a generating partition.
However, recently Kennel and Buhl[7] proposed a method
for finding a generating partition from a time series which
uses “symbolic false nearest neighbors” to “localize” the re-
gion specified by a finite block of symbols.

We propose a method for estimating a generating partition
from a time series. It is significantly different from that of
Kennel and Buhl in that we approximate the generating par-
tition by tessellations of state space and use certain funda-
mental properties of generating partitions observed by Eck-
mann and Ruelle[8]. In Sec. II, we define necessary notions
and outline the conceptual basis of our algorithm. In Sec. III,
we state our algorithm. In Sec. IV, we apply the proposed
method to time series data generated by Hénon and Ikeda
maps, show that the estimated partitions are close to those

found in previous work[3,4], and show that they yield good
estimates of the metric and topological entropies. The parti-
tion obtained from the algorithm may depend on how it is
initialized, so in Sec. V, we examine the effects of initializa-
tion and discuss how to deal with them. In Sec. VI, we evalu-
ate the proposed method and compare it with previous meth-
ods [4,7].

II. CONCEPTUAL BACKGROUND

We begin with several paragraphs that establish notation
for some special partitions, then state a fundamental result
concerning these partitions and generating partitions. Moti-
vated by this fundamental result we develop the ideas that
underpin and justify our methodology.

In all that follows, we shall assume that the state spaceM
of the dynamical system in question is a bounded subset of
d-dimensional Euclidean space with the usual two-normixi
for xPM, and that the dynamicsf :M→M are continuous.
We also assume, for simplicity, thatf can be inverted.(The
following argument should be easily generalized for a non-
invertible case.) In this case, aninitial condition x0PM
gives rise to a uniquetrajectory ¯ ,x−1,x0,x1,¯ PM, sat-
isfying xt= fsxt−1d. We suppose that we are givenN consecu-
tive points of a trajectory, and our problem is to estimate a
generating partition fromthis time series.

A partition A of M is a finite collection of disjoint sets
whose union isM. Given this partition, we define the func-
tion f :M→A, wherefsxd=A whenxPA. We callfsxd the
symbolassigned tox. We use a partition rather than a topo-
logical partition because we can definef for all the points in
M; Eckmann and Ruelle[8] likewise used a partition to de-
fine a generating partition. Corresponding to the trajectory
¯ ,x−1,x0,x1,¯ is the symbol sequencē X−1.X0X1¯,
whereXt=fsxtd. We insert a dot in the symbol sequence to
provide a place maker: it indicates the present, orcenter, X0
of the symbol sequence, where the present, or center, occurs
immediately after the dot.

As the initial point determines the symbol sequence, we
can consider a mapF :M→AZ, which assigns tox0 the sym-
bol sequenceFsx0d=¯X−1.X0X1¯.

Let s :AZ→AZ be the map such thatss¯X−1.X0X1¯ d
=¯X−1X0.X1¯. We calls theshift map, and a subset ofAZ

closed under s a shift space. Observe thatF(fsx0d)
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=¯X−1X0.X1¯ =ss¯X−1.X0X1¯ d=s(Fsx0d), that is, the
following diagram commutes:

x →
f

fsxd

F↓ F↓
Fsxd →

s

s„Fsxd… = F„fsxd….

We say thatA is agenerating partitionif F is one to one,
up to a set of measure zero, onM and a subset ofAZ that is
a shift space.(See, for example, Lind and Marcus[Ref. [9],
pp. 5,6] for a rigorous definition of such a shift space using
“forbidden blocks.”) The shift space in question is the image
FsMd, and on this shift space the mapF has an inverseF−1

and we havefsxd=F−1ss(Fsxd)d. Therefore, when the parti-
tion is a generating partition, the original dynamics and the
symbol dynamics are conjugate.

Consider a finite subsequence of consecutive symbols,
which we will call asubstring. For convenience, we denote
the substringXt1

Xt1+1¯Xt2
by Xft1,t2g. For m,n.0, let

Ff−m,ng :M→Am+n+1 be the map such thatFf−m,ngsx0d
=Xf−m,ng. The mapFf−m,ngsxd gives the finite substring of
Fsxd which starts att=−m and ends att=n. Observe that
Ff−m,ngsMd is the set of all possible substrings of lengthsm
+n+1d. More important for what follows, observe that the
preimageFf−m,ng

−1 sXf−m,ngd is the set of pointsxPM that have
the same substringXf−m,ng.

The preimageFf−m,ng
−1 is defined on finite symbol se-

quences, however, it is useful to extend the definition of
Ff−m,ng

−1 to infinite sequences as follows. LetX denote an
admissible infinite symbol sequence,̄X−1.X0X1¯, in shift
spaceFsMd. Define Ff−m,ng

−1 sXd=Ff−m,ng
−1 sXf−m,ngd, that is, to

find Ff−m,ng
−1 sXd, first extract the finite subsequenceXf−m,ng,

then find the preimageFf−m,ng
−1 sXf−m,ngd.

We are now in a position to state the key motivation
for our algorithm. For a set EPM, let diamsEd
=suphix−yi :x,yPEj. Call the mapsFf−m,ng localizing if
supXdiam(Ff−k,kg

−1 sXd)→0 ask→`. Eckmann and Ruelle[8]
stated that if theFf−m,ng are localizing, then this is a sufficient
condition forA being a generating partition. Hence, a pos-
sible guide to finding a generating partition is to find a par-
tition such that longer substringsXf−m,ng should specify
smaller regions of points with the same substring.

When the Ff−m,ng are localizing, the set of points
Ff−m,ng

−1 sXd tends to be small for largem andn. Hence this set
may be accurately located by a single point. For each sub-
string SPFf−m,ngsMd, assign a pointrSPM to be called the
representativeof Ff−m,ng

−1 sSd, typically we choose a point near
the center of the set. It follows(from theorem 1 in the Ap-
pendix) that if Ff−m,ng are localizing, then the representatives
can be chosen so that

sup
xPM

ix − rFf−k,kgsxdi → 0, k → `. s1d

Conversely, if supxPMix−rFf−k,kgsxdi→0 as k→`, then

Ff−m,ng are localizing (theorem 2). It is also true that if

supxPMix−rFf−k,kgsxdi→0 ask→`, then the partition is gen-

erating onM (theorem 3).
A set of representatives, for fixedm and n, can also be

used to specify a partition by tessellating the state space us-
ing the representatives. For each substringSPFf−m,ngsMd,
we define itstile TS to be the set of points inM that have the
representativerS as their nearest neighbor, that is,

TS= hx P M:ix − rSi ø ix − rS8i, ∀ S8 P Ff−m,ngsMdj.

s2d

Then for each APA we collect all tiles TS, for S
=S−m¯SnPFf−m,ngsMd, satisfyingS0=A, to form a set,

BA,f−m,ng = ø hTS:SP Ff−m,ngsMd,S0 = Aj. s3d

This set is a good approximation ofA. In fact, whenFf−m,ng
is localizing,

BA,f−k,kg → A, k → `, s4d

where the limit is in the sense that ifBi →A, then
supxPAhinfix−yi :yPBij→0 and supyPBi

hinfix−yi :xPAj
→0 (corollary 1).

Clearly, a method will find a generating partition if it finds
Ff−m,ng that are localizing. Our aim is to do this approxi-
mately given only time series datax1,x2,¯ ,xN. Equations
(1) and(4) essentially imply conditions that can do this with-
out explicitly constructing theFf−m,ng, that is, we need only
construct suitable sets of representatives,

Rf−m,ng = hrS:SP Ff−m,ngsMdj. s5d

Equation(1) implies we require that maxiixi −rFf−m,ngsxid
i is

small for largem andn. Therefore, we claim that the follow-
ing minimization yields good estimates of the generating par-
tition:

min
Rf−m,ng,A

o
t=m+1

N−n

ixt − rFf−m,ngsxtd
i2, s6d

where the minimization is over the representatives and the
partition. However, this minimization is awkward, because it
requires explicit specification of the partition. However, it is
sufficient to just labelxt by suitable symbolsXt, that is, we
need to optimize overX1,X2,¯ ,XN, given the representa-
tives. Hence, the problem reduces to the minimization,

min
Rf−m,ng,Xf1,Ng

o
t=m+1

N−n

ixt − rXft−m,t+ng
i2. s7d

We call ot=m+1
N−n ix−rXft−m,t+ng

i2 the discrepancy, since it is a

measure of how well each time series point is approximated
by its corresponding representative. It is shown in theorem 4
that the partition is a generating partition if the dynamics are
ergodic and the discrepancy divided byN goes to 0 asN
→` and m=n=k→`. As the discrepancy is non-negative,
we try to minimize the discrepancy to estimate a generating
partition.

One might refer to this method for estimating a generating
partition assymbolic shadowing, because the original data
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hxtj are eventually shadowed by the time serieshrXft−m,t+ng
j.

Specifically, there existsd.0 such that any time series
hxtjt=m+1

N has a symbol sequenceXf1,Ng satisfy-
ing ixt−rXft−m,t+ng

i,d for t=m+1,m+2,¯ ,N−n. This is

similar to thed trace in work by Bowen[10]. For further
information on shadowing, see work by Pilyugin[11] and by
Palmer[12]. The idea of shadowing is applied to state esti-
mation [13–15], noise reduction[16–19], and finding un-
stable periodic orbits[20–22].

To find an approximate solution to Eq.(7), we use an
iterative algorithm that repeats the following two minimiza-
tions. First we fix a set of representatives and minimize the
discrepancy over the symbol sequence:

min
Xf1,Ng

o
t=m+1

N−n

ixt − rXft−m,t+ng
i2. s8d

Next we fix the symbol sequence and minimize the discrep-
ancy over the set of representatives:

min
Rf−m,ng

o
t=m+1

N−n

ixt − rXft−m,t+ng
i2. s9d

This algorithm is similar to the Linde-Buzo-Gray(LBG) al-
gorithm [23] in information theory[24]. In a way similar to
that of Grayet al. [25], the feasibility of this algorithm can
be shown[26].

Equation(9) is solved exactly, in a way similar to the least
squared method. For each substringS, the solution is given
by the least squares method:

rS=
1

uhi:Xfi−m,i+ng = Sju o
hi:Xfi−m,i+ng=Sj

xi . s10d

Optimizing Eq.(8) is difficult because it is a combinato-
rial optimization. However, we may find areasonableap-
proximation using the property of Eq.(4): We find for xt the
closest representative, whose substring isS−m¯Sn. Then we
assignXt=S0. This is expected to work because a longer
substring specifies a smaller region for eachxt, and the closer
symbols are to the center of the substring, the more signifi-
cant they are expected be in locatingxt.

To begin the iteration of Eqs.(8) and (9) requires an ini-
tial set of representatives, and there are many ways that this
can be done. One could try random initial representatives, or
perhaps successive partitioning of the data into regions con-
taining equal numbers of data points, then use the means of
these as initial representatives. However, it is better to incor-
porate some basic dynamical information, for example, we
know that unstable periodic points must have unique peri-
odic symbol sequences[4,5]. Hence, a good initial set of
representatives can be obtained by finding, and appropriately
labeling, the lowest order unstable periodic points. This also
has the advantage of providing a lower bound on the number
of partitions, that is, the number of unique symbols required.

III. ALGORITHM

Our iterative algorithm can be stated as follows.
(1) We prepare an initial partition. First find unstable pe-

riodic points from a time series. Assign to each unstable
periodic point a substring of lengthl of type
S−mS−m+1¯S−1.S0¯Sn (m= bl /2c andn= bsl −1d /2c) over al-
phabetA so that the unstable periodic points are encoded
uniquely. Let each unstable periodic point be the representa-
tive rSf−m,ng

of the substringSf−m,ngPAl.

(2) For each observed pointxt, find its closest represen-
tative rS−mS−m+1¯S−1.S0¯Sn

. Then makeXt to beS0.
(3) Classify xt depending on its substringXft−m,t+ng: Let

CS=hxt :Xft−m,t+ng=S,m+1ø tøN−nj. Set CS is a set of
points whose currently allocated substring isS.

(4) For each substringSPAl, update its representative:

rS= o
yPCS

y

uCSu
. s11d

(5) Return to step(2) until the set of representatives and
the symbol sequence no longer change, or they cycle.(See
comments below.)

(6) Increase the length of the substrings byl ← l +1, m
← bl /2c andn← bsl −1d /2c. Return to step(3) until a stopping
criterion is achieved.(See comments below.)

There could be several possible stopping criteria. For ex-
ample, one may stop the algorithm when the length of sub-
strings reaches a certain length. Another idea is to use the
discrepancy. One may stop the algorithm whenoi=m+1

N−n ixi
−RXfi−m,i+ng

i2 or maxi ixi −RXfi−m,i+ng
i2 becomes smaller than a

certain prescribed value. An optimal stopping criterion is un-
resolved. In this paper, we stop whenoi=m+1

N−n ixi
−RXfi−m,i+ng

i2/ sN−m−nd is sufficiently small.

In the majority of tested cases, a stationary state is
achieved in step(5), however, we have observed the algo-
rithm to alternate between states in step(5), and cannot rule
out other longer periodic behavior. This is a side effect of
using tessellation to approximate the partition. We have al-
ways observed that the differences between alternating states
were small.

IV. EXAMPLES

Since only a time series is required in order to apply the
proposed method, we do not have to know the map of the
dynamical system. Therefore, it can be used if one recon-
structs state space by forming an embedding. However, in
this paper, we use data sets generated from known models so
that we can compare estimated partitions with those obtained
in the literature.

The first example is the Hénon map[27]:

Sut+1

vt+1
D = S1 − aut

2 + bvt

ut
D , s12d

where sa,bd=s1.4,0.3d. The following calculations takext

=sut ,vtd, and use a time series of 10 000 data points.
In this example, we decided to stop the algorithm when

oi=m+1
N−n ixi −RXfi−m,i+ng

i2/ sN−m−nd, s0.05d2. The algorithm
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was initialized using the lowest order unstable periodic
points, or a fixed point and a period-2 orbit, which were
found using the method of Auerbachet al. [28]. (There are
more sophisticated methods for detecting the unstable peri-
odic points from a time series, such as those given in Refs.
[29,30]. However, in this case, we did not need to use them
because given a time series of length 10 000 the method of
Auerbachet al. [28] was able to detect periodic points up to
order 2.) The period-1 point was assigned the initial sub-
string 0.0 and the period-2 points arbitrarily assigned 0.1 and
1.0, as shown in Fig. 1. Figure 1 also shows the initial par-
tition of setsFf−1,0gsMd.

During the iteration, the partition was changed, as shown
in Fig. 2. We observed that convergence was not “mono-
tonic,” in the sense that the partitions are not nested, how-
ever, the approximate partition gradually became close to
that conjectured by Grassberger and Kantz[3]. When the
algorithm stopped, we obtained the partition shown in Fig 3.
The final estimated partition used 883 representatives and the
length of the substrings was 13.

To analyze the rate of convergence, we measured two
quantities at each iteration: themean error defined as
ot=m+1

N−n ixt−RXft−m,t+ng
i2/ sN−m−nd and the maximum error

defined as maxtixt−RXft−m,t+ng
i2. In Fig. 4 we plot these quan-

tities for the length of substringl. Both of the errors de-
creased, but not always monotonically.

We compare in Fig. 5 the symbol sequence of each length
obtained with that generated from the same time series using
the generating partition conjectured by Grassberger and
Kantz [3], who found homoclinic tangencies and connected
some of them to construct the partition. As the length of the
substrings grew, the symbol sequence obtained came close to
that generated using the partition of Grassberger and Kantz
[3]. For substrings of length 13, it was found that of 10 000

symbols only 12 symbols were different between the two
symbol sequences.

We also tested this partition by comparing the uniqueness
of the symbol sequences assigned to unstable periodic points,
and by comparing the values of the metric entropy and the
topological entropy.

We obtained the unstable periodic points for the Hénon
map using the method of Biham and Wenzel[31], and found
that this partition encodes unstable periodic points uniquely
up to period 17.

FIG. 1. (Color online) Initial partition Ff−1,0g
−1 sSd for the Hénon

map. The symbol3 shows the fixed point, and + the periodic points
of period 2 which are obtained from the time series using the
method of Auerbachet al. [28]. Blue and green points indicate the
points which were initially labeled by symbols 0 and 1,
respectively.

FIG. 2. (Color online) Refining the estimate for a generating
partition during iteration, using the Hénon map. Blue and green
points correspond to symbols 0 and 1, respectively. For each graph,
the red solid line shows the partition line obtained using the pro-
posed algorithm, and the magenta dashed line shows the one con-
jectured by Grassberger and Kantz[3].

FIG. 3. (Color online) PartitionA estimated using 10 000 data
points generated from the Hénon map. Blue and green points are
points in the time series corresponding to symbols 0 and 1, respec-
tively. The red solid line shows the partition line obtained using the
proposed method, and the magenta dashed line shows the generat-
ing partition conjectured by Grassberger and Kantz[3].
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Under the assumption that Pesin’s identity holds, the met-
ric entropy is equal to the sum of positive Lyapunov expo-
nents[8], which is, in this case, 0.6048 using 2 for the loga-
rithmic base[3]. (In what follows, we always use 2 for the
logarithmic base when evaluating Lyapunov exponents, met-
ric entropy, and topological entropy.) For the topological en-
tropy, the most accurate value in the literature is 0.670 75
with a root mean square error of 0.000 04[32]. Using the
methods of Kennel and Mees[33] and of Hirata and of Mees

[34], we estimated, from the symbol sequence obtained, met-
ric entropy of 0.6223 and topological entropy of 0.6746, re-
spectively, both of which agree well with the literature val-
ues.

The second example is the Ikeda map[35]:

Sut+1

yt+1
D = S1 + asut cosu − vt sin ud

asut sin u + vt cosud
D , s13d

whereu=0.4−b/ s1+ut
2+vt

2d, a=6.0, andb=0.9. We gener-
ated time series data of length 10 000.

First the algorithm was initialized by finding the low or-
der unstable periodic points from the time series. We found
unstable periodic orbits of periods 1 and 2 using the method
of Auerbachet al. [28] and assigned substrings as shown in
Fig. 6. We stopped the algorithm when the mean error be-
came less thans0.05d2, and obtained partitionA shown in
Fig. 7, which looks similar to that in Ref.[4]. It had the
substrings of length 11 and 1386 representatives. The change
in error is shown in Fig. 8. The mean error decreased mono-
tonically, whereas the maximum error decreased gradually,
but not monotonically.

We tested this partition using three indices: unique coding
for unstable periodic points, the metric entropy, and the to-
pological entropy.

We calculated the unstable periodic points using the
method of Davidchack and Lai[36], and confirmed that this
partition encodes the unstable periodic points uniquely up to
period 8.

The metric entropy can be compared with the sum of the
positive Lyapunov exponents under the assumption that Pes-
in’s identity holds[8]. The numerical value for the positive
Lyapunov exponent of the Ikeda map is known to be 0.726
[37].

For the topological entropy, we obtained the theoretical
value using the numbers of unstable periodic points listed in
Ref. [36]. Let Nspd be the number of fixed points for the

FIG. 4. Change in error during iteration of the algorithm, the
Hénon map. The solid and broken lines show the mean and maxi-
mum errors, respectively.

FIG. 5. Comparison of the symbol sequence obtained with that
generated using the generating partition conjectured by Grassberger
and Kantz[3], the Hénon map. For each length of substring, we
counted the number of symbols in symbol sequence which did not
agree with those assigned by the conjectured generating partition.
As the length of the substrings grew, the number of “wrong” sym-
bols, out of 10 000, decreased gradually, indicating that the symbol
sequence obtained was close to the symbol sequence generated us-
ing the partition of Grassberger and Kantz.

FIG. 6. (Color online) Initial partition for the Ikeda map. The
initial substrings were assigned to unstable periodic points up to
period 2 as shown. Blue and green points correspond to those with
F0sxd=0 and 1, respectively.
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p-time map. The topological entropy is approximated by
1/p log Nspd. Averaging over those values obtained for pe-
riods between 14 and 22, one would get the estimate of to-
pological entropy 0.8685 with its root mean square 0.0009.

The methods of Kennel and Mees[33] and of Hirata and
Mees [34] were applied for the symbol sequence obtained
from the data, and gave metric entropy of 0.7578 and topo-
logical entropy of 0.8752, respectively. These estimates have
errors of 0.03 and 0.01, respectively.

We also tested the proposed algorithm using 50 000 points
data of the Ikeda map, whose first 10 000 points were the
same as the previous data. We applied the algorithm with the
stopping criterion attaining substrings of length 15. We con-
firmed that the estimated partition could encode the unstable
periodic points uniquely up to period 12, and yielded a met-

ric entropy of 0.7450 and a topological entropy of 0.8748.
These improvements demonstrate that a longer time series
and longer substrings give a more accurate estimate of a
generating partition.

V. CONSEQUENCE OF BAD INITIAL REPRESENTATIVES

Unfortunately, sometimes the algorithm fails due to poor
choice of labeling of the initial representatives. To make the
dependence clear, we again used the data generated from the
Hénon map, but this time, we assigned the initial condition
in the opposite way for period-2 points from that in Sec. IV
(Fig. 1), as shown in Fig. 9, and applied the same procedure
with the same parameters. For comparison, we stopped the
algorithm when it had attained substrings of length 13. We
obtained the partition shown in Fig. 10.

FIG. 10. (Color online) Partition obtained using a different ini-
tial partition. Blue and green points correspond to symbols 0 and 1,
respectively. We exchanged the initial substrings for unstable peri-
odic points of period 2 and attempted to find a generating partition.

FIG. 7. (Color online) Partition estimated using 10 000 data
points generated from the Ikeda map. The blue and green points are
points in the time series encoded using symbols 0 and 1,
respectively.

FIG. 8. Change in error during iterations for the Ikeda map. The
solid and dashed lines show the mean and maximum errors,
respectively.

FIG. 9. (Color online) Assigning the initial condition in the op-
posite way from Fig. 1.
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In the case of the Ikeda map, giving the initial symbols for
period-2 points in the opposite way did not make much dif-
ference in the results except for the fact that the regions for
symbols 0 and 1 were swapped.

A. Fixing a failure of the initial partition

As the example of the Hénon map shows, the success of
the algorithm always relies on good choice and labeling of
the initial representatives.

Failure of the algorithm can be detected easily as dis-
cussed in Sec. V B. To fix the problem, we first try different
labels for the representatives; there is always only a small
number of them for any given choice of representatives. If
relabeling does not solve the problem, then this would sug-
gest that the number of representatives is insufficient or the
number of symbols is insufficient. Hence, we may have to
increase the number of representatives, for example, by in-
creasing the length of initial substringl, or we may have to
increase the number of symbols.

B. Detecting a failure of the initial partition

Fortunately, an ill-prepared initial partition can be easily
identified. We propose two ways by which to check the al-

gorithm’s progress.(When the algorithm succeeds, we do not
observe any of the following.)

One criterion is to check the decrease in errors. When we
chose the poor initial partition for the Hénon map, the mean
error did not decrease satisfactorily(Fig. 11), because the
maximum error returned to the initial level. This suggests
that the maximum error can be an indicator.

A second criterion is the distribution of the representa-
tives. When the algorithm fails, we tend to find some of the
representatives are out of the attractor. Before explaining the
reason why, we first compare the distributions. In the first
Hénon map setting, all the representatives were found to be
on the attractor[Fig. 12(a)]. But in the opposite setting, some
of the representatives were found to be off the attractor[Fig.
12(b)]. This phenomenon can be explained as follows. In
Fig. 12(b), we observe that one of the representatives that
corresponds to a substring 010 100.000 0101 is well outside
the attractor. Figure 13 shows the all data points whose sub-
string is 010 100.000 0101. We can see that these points are
found in three different regions of the attractor that are not
contiguous. This is counter to requirements of Eq.(1). These
points, with the same substring, are not well localized or well

FIG. 11. Change in error when we assign the initial labels for
the representatives as shown in Fig. 9. The solid and broken lines
show the mean and maximum errors, respectively.

FIG. 12. (Color online) Distri-
bution of representatives.(a) In
the original setting(Fig. 1), all
representatives are located on the
attractor. But in(b), the opposite
setting (Fig. 9), some representa-
tives are located out of the attrac-
tor. This shows that the partition
obtained from the opposite setting
is bad.

FIG. 13. (Color online) Example of representatives which are
badly placed. In this example, the data of the Hénon map, the al-
gorithm was started with the initial partition in Fig. 9. Marked by3
are the points with substring 010 100.000 0101. These points are in
the three disconnected regions. Averaging over these points gave +,
which is their representative.

ESTIMATING A GENERATING PARTITION FROM… PHYSICAL REVIEW E 70, 016215(2004)

016215-7



represented by one point. Consequently, the measures of er-
ror do not decrease, because these points prevent the errors
going to zero.

VI. EVALUATION

There are two other methods for estimating a generating
partition. When a system is given, a commonly used tech-
nique is to encode the unstable periodic points up to certain
order uniquely[4,5]. Recently, Kennel and Buhl[7] pro-
posed another algorithm for estimating a generating partition
from a time series. The proposed method has a rigorous jus-
tification, given in the Appendix, but the method of Kennel
and Buhl[7] does not.

The proposed algorithm gives useful results for noisy time
series. We tested the noisy case by adding 10% Gaussian
noise to the 10 000 points data of the Hénon map. Instead of
detecting the unstable periodic points, we initialized the al-
gorithm in the following way. First we split the time series at
the median ofvt. Second we encoded each point with the
symbol 0 if itsvt is smaller than the median, and with sym-
bol 1 otherwise. In this way, we obtained the initial symbol
sequence. Third we started the algorithm from step(3) by
classifying points of the time series using their substrings of
length 2. We stopped the algorithm when it converged with
substrings of length 13.

The partition obtained from the noisy time series is shown
in Fig. 14, which we note is close to the partition conjectured
by Grassberger and Kantz[3]. Despite the noise, only 22
points out of 10 000 points are labeled differently than the
partition conjectured by Grassberger and Kantz. It was con-
firmed that this partition encodes the unstable periodic points
uniquely up to order 15. Using the symbol sequence ob-
tained, we estimated 0.626 for the metric entropy and 0.677
for the topological entropy. This agrees well with their theo-

retical values 0.6048[3] and 0.670 75[32], respectively. The
results in this noisy case are comparable to the results of
Kennel and Buhl[7]. The proposed method is much better
than identifying and labeling unstable periodic points from
the noisy time series, because it is also hard to ensure that
one detects all the unstable periodic points up to a certain
order from a noisy time series.

The proposed algorithm gave useful results with a short
time series. We took the first 2000 points of the clean data of
the Hénon map and applied the algorithm in the same way
we did for the noisy case. The partition obtained is shown in
Fig. 15. Out of 2000 symbols, this partition has 12 symbols
different from the partition conjectured by Grassberger and
Kantz[3]. This partition encodes the unstable periodic points
uniquely up to period 14. Using this partition, we estimated
0.642 for the metric entropy and 0.684 for the topological
entropy, both of which are close to their theoretical values
0.6048[3] and 0.670 75[32], respectively.

The proposed algorithm needs to assign fewer parameters
in advance than that of Kennel and Buhl[7].

The proposed algorithm is deterministic, that is, given the
same initial condition, it gives the same solution. However,
the algorithm of Kennel and Buhl[7] uses “differential evo-
lution” [38], a genetic-type algorithm, which is stochastic
optimization. Therefore, each application of the algorithm
can generate a different answer. Differential evolution runs
fast in general because it can reduce the number evaluations
of the cost functions[38].

The proposed algorithm runs fast because the cost func-
tion is simple to solve and we try to avoid evaluating the cost
function as much as possible. The proposed algorithm needs
to evaluate the cost function only when one considers stop-
ping the algorithm. We tested the speed of the proposed al-
gorithm using a computer with CPU Pentinum III 1 GHz and
256 MB memory. The program was written and run using
MATLAB 6.5. When we used the 10 000 point data of the

FIG. 14. (Color online) Estimating a generating partition using
10 000 point data of the Hénon map, contaminated by 10% Gauss-
ian noise. Blue and green dots show points with symbols 0 and 1,
respectively. The red solid line shows the partition line obtained
using the proposed method and, the magenta dashed line shows the
generating partition conjectured by Grassberger and Kantz[3].

FIG. 15. (Color online) Estimating a generating partition using
2000 point clean data of the Hénon map. Blue and green dots show
points with symbols of 0 and 1, respectively. The red solid line
shows the partition line obtained using the proposed method and the
magenta dashed line shows the generating partition conjectured by
Grassberger and Kantz[3].
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Hénon map, the algorithm took 564 s from step(2) to the
end. When we used the first 2000 points in the above test, the
algorithm took 63 s. The noise did not affect the perfor-
mance much. When we add 10% Gaussian noise to the
10 000 point data in the above test, the algorithm took 589 s.
If we do not require in step(5) that the symbol sequence
converges completely, then computation is faster.

VII. CONCLUSION

We proposed a method for estimating a generating parti-
tion from observed time series data generated from an invert-
ible map. The partition is approximated by tessellating state
space with representatives, that is, points in state space, each
of which has a distinct substring of a certain length. Using
our scheme, we stated the problem of finding a generating
partition as finding the minimum discrepancy between a se-
ries of points in the data and one specified by a symbol
sequence and representatives. By solving this minimization
problem approximately using an iterative algorithm, we
found an estimate for a generating partition.

We applied our method for time series of Hénon and
Ikeda maps. Estimates of generating partitions obtained from
10 000 data points uniquely encoded all periodic points of
order less than 18 for the Hénon map and 9 for the Ikeda
map, respectively. They also gave reasonable values for the
metric and topological entropies.

Details of the proof for the proposed method and imple-
mentation for short and noisy time series are discussed else-
where[26].
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APPENDIX

Here we briefly describe proof of the theorems. Letm be
the invariant measure of the system.

Theorem 1. If A is localizing, there exists a function
r f−m,ngsxd=rFf−m,ngsxd such that limk→`supxPMir f−k,kgsxd−xi=0.

Proof. Let X be a symbol sequence that corresponds tox.
Define r f−m,ng

* sxd by

1

m„Ff−m,ng
−1 sXd…

E
Ff−m,ng

−1 sXd
ydmsyd. sA1d

For thelth coordinate, we have the following inequalities:

uxl − r f−m,ng
* sxdlu = U 1

m„Ff−m,ng
−1 sXd…

E
Ff−m,ng

−1 sXd
sxl − ylddmsydU

ø
1

m„Ff−m,ng
−1 sXd…

E
Ff−m,ng

−1 sXd
uxl − yludmsyd

ø
1

m„Ff−m,ng
−1 sXd…

E
Ff−m,ng

−1 sXd
ix − yidmsyd

ø

E
Ff−m,ng

−1 sXd
diam„Ff−m,ng

−1 sXd…dmsyd

m„Ff−m,ng
−1 sXd…

ø
m„Ff−m,ng

−1 sXd…diam„Ff−m,ng
−1 sXd…

m„Ff−m,ng
−1 sXd…

ø diam„Ff−m,ng
−1 sXd…,

resulting in

uxl − r f−m,ng
* sxdlu ø sup

X
diam„Ff−m,ng

−1 sXd…. sA2d

Therefore, if limk→`supXdiam(Ff−k,kg
−1 sXd)=0, then

limk→` uxl −r f−k,kg
* sxdl u =0. When uxl −r f−m,ng

* sxdl u ,e,1, we
have uxl −r f−m,ng

* sxdlu2, uxl −r f−m,ng
* sxdlu. Therefore, it follows

that

ix − r f−m,ng
* sxdi2 = o

l

uxl − r f−m,ng
* sxdlu2 , o

l

uxl − r f−m,ng
* sxdlu

ø o
l

sup
X

diam„Ff−m,ng
−1 sXd…

ø d sup
X

diam„Ff−m,ng
−1 sXd….

Taking the supremum overM, we have supxPMix
−r f−m,ng

* sxdi2ød supXdiam(Ff−m,ng
−1 sXd). Hence, if

limk→`supXdiam(Ff−k,kg
−1 sXd)=0, then limk→`supxPMix

−r f−k,kg
* sxdi2=0. We can conclude that isr f−m,ngsxd satisfies

the desired property.
The converse of theorem 1 also holds, that is, the follow-

ing theorem.
Theorem 2. If lim k→`supxPMir f−k,kgsxd−xi=0, thenA is

localizing.
Proof. Let X be a symbol sequence forxPM. Suppose

there exists y,zPM such that Ff−m,ngsxd=Ff−m,ngsyd
=Ff−m,ngszd.

iy − zi ø iy − rFf−m,ngsydi + iz− rFf−m,ngsydi

= iy − rFf−m,ngsydi + iz− rFf−m,ngszdi

ø 2 sup
wPM

iw − rFf−m,ngswdi.

By taking the supremum overy,zPA, we have
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diamFf−m,ng
−1 sXd = sup

y,zPFf−m,ng
−1 sXd

iy − zi ø 2 sup
wPM

iw − rFf−m,ngswdi.

Taking the supremum over all the admissible symbol se-
quences, we have

sup
X

diam Ff−m,ng
−1 sXd ø 2 sup

wPM
iw − rFf−m,ngswdi. sA3d

Because supwPMiw−rFf−k,kgswdi→0 ask→`, it follows that

lim
k→`

sup
X

diamFf−k,kg
−1 sXd = 0, sA4d

indicating thatA is localizing.
Consequently, when we choose the representatives using

Eq. (A1), condition limk→`supir f−k,kgsxd−xi=0 is equivalent
to localizing.

Lemma 1. Let M0 be a subset ofM. If lim k→`ix
−r f−k,kgsxdi=0 for every xPM0, then A assigns a unique
symbol sequence to each point onM0.

Proof. Take any two distinct pointsx,yPM0. Then there
existse.0 such thatix−yi.e.0. The triangle inequalities
make the following inequalities true:

ir f−k,kgsxd − r f−k,kgsydi

= isx − yd + h„r f−k,kgsxd − x… − „r f−k,kgsyd − y…ji

ù ix − yi − i„r f−k,kgsxd − x… − „r f−k,kgsyd − y…i

ù ix − yi − ir f−k,kgsxd − xi − ir f−k,kgsyd − yi.

Then for e.0, there existsk1 such that ifkùk1, then ix
−r f−k,kgsxdi,

1
3e. Similarly, there existsk2 such that ifkùk2,

theniy−r f−k,kgsydi,
1
3e. Let k0=maxhk1,k2j. If kùk0, then it

follows that ir f−k,kgsxd−r f−k,kgsydiù
1
3e.0. As the distance

between r f−k,kgsxd and r f−k,kgsyd is positive, two points
r f−k,kgsxd and r f−k,kgsyd are different from each other, indicat-
ing thatx andy are assigned different substrings. As any two
points inM0 have different substrings, a point inM0 has its
unique symbol sequence.

Therom 3. If lim k→`supxPMix−r f−k,kgsxdi=0, then A is
generating onM.

Proof. If lim k→`supxPMix−r f−k,kgsxdi=0, then limk→`ix
−r f−k,kgsxdi=0 for everyxPM. Using lemma 1, the partition
A assigns a unique symbol sequence to each point inM,
meaning thatA is a generating partition onM.

When f is ergodic onM, then

lim
N→`

1

N − m− n o
t=m+1

N−n

ixt − r f−m,ngsxtdi2

=E
M

ix − r f−m,ngsxdi2dmsxd.

Denote this quantity byHA,f−m,ng.
Theorem 4. If f is ergodic onM and limk→`HA,f−k,kg=0,

then the partitionA is generating onM.
Proof. The following chain of equalities holds:

lim
k→`

E ix − r f−k,kgsxdi2dmsxd

=E lim
k→`

ix − r f−k,kgsxdi2dmsxd

=E
hx: lim

k→`
ix−rf−k,kgsxdi=0j

lim
k→`

ix − r f−k,kgsxdi2dmsxd

+E
hx: lim

k→`
ix−rf−k,kgsxdi.0j

lim
k→`

ix − r f−k,kgsxdi2dmsxd

=E
hx: lim

k→`
ix−rf−k,kgsxdi.0j

lim
k→`

ix − r f−k,kgsxdi2dmsxd = 0,

where the first equality holds because asM is bounded, the
inside ix−r f−k,kgsxdi2 of the integral is bounded, and we can
swap the order of the integral and the limit.

To have the last equality valid, we need

mshx: lim
k→`

ix − r f−k,kgsxdi . 0jd = 0, sA5d

meaning that

mshx: lim
k→`

ix − r f−k,kgsxdi = 0jd = 1. sA6d

Therefore, from lemma 1, there exists a subsetM0,M of
full measure such thatA assigns a unique symbol sequence
to each point onM0, indicating thatA is generating onM.

This theorem means that if a partition has the property
that the average distance between a point and its representa-
tive converges to 0, then any two points can be distinguished
from each other with probability 1. Hence limk→`HA,f−k,kg
=0 gives a generating partition.

Theorem 5. If lim k→`supxPMix−r f−k,kg
* sxdi=0, then

BA,f−k,kg→A in the sense that supxPAinfyPBA,f−k,kg
ix−yi→0

and supxPBA,f−k,kg
infyPAix−yi→0.

Proof. We first prove supxPAinfyPBA,f−k,kg
ix−yi→0. We di-

vide A into two sets:AùBA,f−k,kg and AùBA,f−k,kg
c . For x

PAùBA,f−k,kg, we have infyPBA,f−k,kg
ix−yi=0. For x

PAùBA,f−k,kg
c , we haver f−k,kg

* sxdPBA,f−k,kg becauser f−k,kg
* sxd

is located at the center of the tile included inBA,f−k,kg. There-
fore, for xPAùBA,f−k,kg

c , the following inequality stands:

inf
yPBA,f−k,kg

ix − yi ø ix − r f−k,kg
* sxdi. sA7d

Hence,

sup
xPA

inf
yPBA,f−k,kg

ix − yi ø sup
xPA

ix − r f−k,kg
* sxdi → 0, sA8d

resulting in the desired relation.
For the second part: supyPBA,f−k,kg

infxPAix−yi→0, divide

BA,f−k,kg into two sets:BA,f−k,kgùA and BA,f−k,kgùAc. For y
PBA,f−k,kgùA, there existsxPA such thatix−yi=0. For y
PBA,f−k,kgùAc, let cf−m,ngsyd be a map ofM into hr f−m,ng

* sMdj,
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giving the closest representative toy in metric i ·i. From the
triangle inequality, we also haveix−yiø ix−cf−k,kgsydi
+icf−k,kgsyd−yi for everyxPA. Becausecf−k,kgsyd is the clos-
est representative toy, icf−k,kgsyd−yiø iz−yi for z
P hr f−k,kg

* sMdj. Especially icf−k,kgsyd−yiø ir f−k,kg
* syd−yi.

Hence, the following inequality is true forxPA and y
PBA,f−k,kg:

inf
xPA

ix − yi ø ix − yi ø ix − cf−k,kgsydi + icf−k,kgsyd − yi

ø ix − cf−k,kgsydi + ir f−k,kg
* syd − yi.

BecauseyPBA,f−k,kg, the representativecf−k,kgsyd is the one
whose tile is included inBA,f−k,kg. As xPA is arbitrary, we
can choosex whose representative iscf−k,kgsyd. Then, the first
term has the upper bound,

ix − cf−k,kgsydi = ix − r f−k,kg
* sxdi ø sup

xPA
ix − r f−k,kg

* sxdi.

By taking the supremum overBA,f−k,kg, we have

sup
yPBA,f−k,kg

inf
xPA

ix − yi

ø sup
yPBA,f−k,kg

hsup
xPA

ix − r f−k,kg
* sxdi + ir f−k,kg

* syd − yij

ø sup
xPA

ix − r f−k,kg
* sxdi + sup

yPBA,f−k,kg

ir f−k,kg
* syd − yi

ø 2sup
xPM

ix − r f−k,kg
* sxdi → 0.

Therefore, the statement holds.
Corollary 1. If FA is localizing, thenBA,f−k,kg→A for

eachAPA.
Proof. Using theorem 1, the localizing property means

that limk→`supxPMir f−k,kg
* sxd−xi=0. From Theorem 5, the

statement should follow.
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