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Estimating a generating partition from observed time series: Symbolic shadowing
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We propose a deterministic algorithm for approximating a generating partition from a time series using
tessellations. Using data generated by Hénon and lkeda maps, we demonstrate that the proposed method
produces partitions that uniquely encode all the periodic points up to some order, and provide good estimates
of the metric and topological entropies. The algorithm gives useful results even with a short noisy time series.
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I. INTRODUCTION found in previous worK3,4], and show that they yield good
, o estimates of the metric and topological entropies. The parti-
The theory of symbolic dynamics is a powerful tool for o gptained from the algorithm may depend on how it is
the investigation of discrete time dynamical systems. The&pjtialized, so in Sec. V, we examine the effects of initializa-
main idea is that of gartition, that is, a finite collectiond  jon and discuss how to deal with them. In Sec. VI, we evalu-

of disjoint subsets whose union is the state spiteBy e the proposed method and compare it with previous meth-
identifying eachA e A with a uniquesymbo] we have a ods[4,7).

sequence of symbols that correspond to each trajectory of the
original system—the sequence is produced as the evolving
state visits different regions of the partition. This idea is at its
most powerful when the partition is chosen to bgemerat- We begin with several paragraphs that establish notation
ing partition, that is, when the assignment of symbol se-for some special partitions, then state a fundamental result
guences to trajectories is unique, up to a set of measure zergoncerning these partitions and generating partitions. Moti-
Generating partitions have been found to be desirable in aprated by this fundamental result we develop the ideas that
plications such as chaotic communicatifd}, and in prob-  underpin and justify our methodology.
lems of parameter estimatiq@]. In all that follows, we shall assume that the state spdce
As might be expected, generating partitions have oftervf the dynamical system in question is a bounded subset of
proven difficult to find. When the dynamical system is de-d-dimensional Euclidean space with the usual two-néxfn
fined by a known map, there are methods by which to findor x e M, and that the dynamick:M —M are continuous.
generating partitions using “primary tangenci¢3]' and also  We also assume, for simplicity, thatcan be inverted(The
by consideration of unstable periodic orbjs-6]. In cases following argument should be easily generalized for a non-
where the dynamical system is not fully known, for example,invertible case. In this case, arinitial condition x, e M
in the practically important case in which only a time seriesgives rise to a uniquérajectory - -+,X_;,Xg, Xy, - € M, sat-
of observations is available, there appears to be no previsfying x,=f(x..;). We suppose that we are givéhconsecu-
ously published methods for obtaining a generating partitiongive points of a trajectory, and our problem is to estimate a
However, recently Kennel and Bufil] proposed a method generating partition fronthis time series
for finding a generating partition from a time series which A partition .4 of M is a finite collection of disjoint sets
uses “symbolic false nearest neighbors” to “localize” the resyhose union isM. Given this partition, we define the func-
gion specified by a finite block of symbols. tion ¢:M— A, whereg(x)=A whenx e A. We call ¢(x) the
We propose a method for estimating a generating partitioymholassigned toc. We use a partition rather than a topo-
Kennel and Buhl in that we approximate the generating paryj: Eckmann and Ruellg8] likewise used a partition to de-
tition by tesse”ations Of State Space and use Cel’tain fundq.me a generating partition‘ Corresponding to the trajectory
mental properties of generating partitions observed by Eck-.. x | x, x,,--- is the symbol sequence:-X_;.XoX; -+,
mann and Ruell¢8]. In Sec. Il, we define necessary notions \yhere X, = ¢(x,). We insert a dot in the symbol sequence to
and outline the conceptual basis of our algorithm. In Sec. Il gvide a place maker: it indicates the presenteanter X,

we state our algorithm. In Sec. IV, we apply the proposedsf the symbol sequence, where the present, or center, occurs
method to time series data generated by Henon and Ikedgmediately after the dot.

maps, show that the estimated partitions are close to those ag the initial point determines the symbol sequence, we

can consider a magp: M — A”, which assigns te, the sym-
bol sequenced(xg)=---X_1. XXy .

1. CONCEPTUAL BACKGROUND

*Electronic address: yoshito@maths.uwa.edu.au Let o: A” — A” be the map such that(---X_;. XoX;- )
"Electronic address: kevin@maths.uwa.edu.au =--+X_1Xo. Xy - -. We callo the shift map and a subset oft”
*Electronic address: devin@maths.uwa.edu.au closed undero a shift space Observe that®(f(xy))
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= Xy Xo Xy =0 Xy XXy ) = (D (X)), that is, the SUQ(EM”X_r(I,[_kk](X)”*)O ask— o, then the partition is gen-

following diagram commutes: erating onM (theorem 3.
f A set of representatives, for fixed andn, can also be
x —  fx used to specify a partition by tessellating the state space us-
ing the representatives. For each substigd_, (M),
o] o] we define itgtile Tgto be the set of points iM that have the

representativeg as their nearest neighbor, that is,

Ts={xe Mi[x-rd|<|x-rg[, 0SS € Op_pnn(M)}.
We say thatA is agenerating partitionf ® is one to one, 2
up to a set of measure zero, dhand a subset ofl” that is
a shift space(See, for example, Lind and Marc{Bef. [9],  Then for eachAe A we collect all tiles T, for S

pp. 5,9 for a rigorous definition of such a shift space using:sLm...Sn e ®r_pm(M), satisfyingS=A, to form a set,
“forbidden blocks.} The shift space in question is the image ’

®(M), and on this shift space the mdphas an invers@! Bar-mn = U{TsS e ®ppy(M),S=A}. 3
and we have (x)=® 1(o(P(x))). Therefore, when the parti-
tion is a generating partition, the original dynamics and the -
symbol dynamics are conjugate. is localizing,

Consider a finite subsequence of consecutive symbols, Baki — A k— o, (4)
which we will call asubstring For convenience, we denote e
the substring X X; +1-*-X;, by Xy- For m,n>0, let where the limit is in the sense that iB—A, then
P :M— A™M1 be the map such thatd_pqn(X)  SUpealinflx-y|:yeB}—0 and sup_glinfllx-y||:x e A}
=X-mn)- The map®_ (x) gives the finite substring of — 0 (corollary 1.
®(x) which starts at=—m and ends at=n. Observe that Clearly, a method will find a generating partition if it finds
®p_mn(M) is the set of all possible substrings of length ~ P[-mp that are localizing. Our aim is to do this approxi-
+n+1). More important for what follows, observe that the mately given only time series daiq,X,,-+,Xy. Equations
preimage(l)f}m,n](x[_m,n]) is the set of pointx e M that have (1) and(4) essentially imply conditions that can do this with-

P(x) —  o(P(x) =D(f(x)).

eThis set is a good approximation Af In fact, when®_p, ;

the same substring_p ;. out explicitly constructing theb;_, ,;, that is, we need only
The preimaged;’, , is defined on finite symbol se- construct suitable sets of representatives,
quences, however, it is useful to extend the definition of Ri-mn = {rs:S € ®p_mm(M)}. (5)

(I)[’_lm'n] to infinite sequences as follows. Lét denote an _ o _ _
admissible infinite symbol sequence;X_;.XoX, -+, in shift ~ Equation(l) implies we require that m%bxi_hb[_m‘n](xi)” Is
space®(M). Define @, () =P 1(X-mn). that is, to  small for largem andn. Therefore, we claim that the follow-

find <I>['_lm,n](X), first extract the finite subsequen¥g.,,,;,  iNg minimization yields good estimates of the generating par-
then find the preimagé % (X _mn)- tition:

We are now in a position to state the key motivation N-n
for our algorithm. For a setEeM, let dian(E) min >, ||Xt_r¢’[fmn]<><1>”2' (6)
=suf|lx-y|[:x,y e E}. Call the maps®[_p,; localizing if R-mnpAt=me1 ’

supdiam( @2 4(X)) —0 ask— . Eckmann and Ruelli8]  where the minimization is over the representatives and the
stated that if theb,_, ,; are localizing, then this is a sufficient partition. However, this minimization is awkward, because it
condition for.4 being a generating partition. Hence, a pos-requires explicit specification of the partition. However, it is
sible guide to finding a generating partition is to find a par-sufficient to just labek; by suitable symbols;, that is, we
titon such that longer substringX_,, should specify need to optimize oveK;,X, -, Xy, given the representa-

smaller regions of points with the same substring. tives. Hence, the problem reduces to the minimization,
When the ®_,; are localizing, the set of points N-n
@1 (&) tends to be small for large andn. Hence this set min > [x- rx[t_m’l+n]||2. 7

may be accurately located by a single point. For each sub- Remn XN =

string Se ®p_py(M), assign a pointse M to be called the  we call i, [x-rx_ ., I the discrepancy since it is a

representativef %, (S), typically we choose a point near measure of how well each time series point is approximated
the center of the set. It followdrom theorem 1 in the Ap- by its corresponding representative. It is shown in theorem 4
pendiy that if ®_, ,; are localizing, then the representatives that the partition is a generating partition if the dynamics are
can be chosen so that ergodic and the discrepancy divided blygoes to 0 asN

—o and m=n=k— . As the discrepancy is non-negative,

i“ﬁ'x - r‘b[-k,k]o‘)” =0, ke @ we try to minimize the discrepancy to estimate a generating
. partition.
Conversely, if supulx—ra_,,«l—0 as k—e, then One might refer to this method for estimating a generating

®;_,n are localizing (theorem 2. It is also true that if partition assymbolic shadowingbecause the original data
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{x} are eventually shadowed by the time serﬂn—:%_mm]}. lIl. ALGORITHM
Specifically, there exist$>0 such that any time series  Our iterative algorithm can be stated as follows.
{X}=ms1 has a symbol sequenceXpy, satisfy- (1) We prepare an initial partition. First find unstable pe-

ing ||Xt_rx[t—mt+n]||<5 for t=m+1,m+2,--- N-n. This is riodic points from a time series. Assign to each unstable

similar to the 8 trace in work by Bower{10]. For further ~ Periodic point ~a substring of lengthl of type
information on shadowing, see work by Pilyugitt] and by ~ S-mS-me1'**S1-Sor S (M=[1/2] andn=[(1-1)/2]) over al-
Palmer[12]. The idea of shadowing is applied to state esti-Phabet.A so that the unstable periodic points are encoded
mation [13—15, noise reductiof16—19, and finding un- qniquely. Let each unst_able periodic point be the representa-
stable periodic orbit§20—23. tivers_ . of the substringS mn e Al

To find an approximate solution to E@7), we use an (2) For each observed point, find its closest represen-
iterative algorithm that repeats the following two minimiza- tative 1S, Sy S %S, Then makeX; to be S,.
tions. First we fix a set of representatives and minimize the (3) Classify x, depending on its substring,_p,..: Let

discrepancy over the symbol sequence: Co={X: X mumy=S,m+1<t<N-n}. SetCs is a set of

points whose currently allocated substringSis
_ NN (4) For each substrin§e A', update its representative:
min > X - rx[t_mvt+n]||2. (8)
[1N] t=m+1 fo= 2 L. (11)
yeCgqg |CS|
Next we fix the symbol sequence and minimize the discrep-

ancy over the set of representatives: (5) Return to stef2) until the set of representatives and

the symbol sequence no longer change, or they cySlee
comments below.
(6) Increase the length of the substrings Ipy-1+1, m
: 9 —[I/2] andn«+[(I-1)/2]. Return to steg3) until a stopping
criterion is achieved(See comments below.
There could be several possible stopping criteria. For ex-
This algorithm is similar to the Linde-Buzo-GrayBG) al-  ample, one may stop the algorithm when the length of sub-
gorithm [23] in information theory[24]. In a way similar to  strings reaches a certain length. Another idea is to use the
that of Grayet al. [25_], the feaSIblllty of this algorithm can discrepancy One may Stop the a|gorithm Wh@{\:n[lll ||Xi
be shown[26]. -Ry._|Por max [x—Ry. _|]> becomes smaller than a
Equation(9) is solved exactly, in a way similar to the least =il Li-mi+n] . o
o certain prescribed value. An optimal stopping criterion is un-
squared method. For each substrighe solution is given resolved. In  this row ; wheEN""
by the least squares method: 12 paper, Wwe siop Elhizme 11X
[2/(N-m-n) is sufficiently small.

N-n
min >, [x-r 2
R-mn] t=m+1 U Xtemyten)

- X[i—m,i+n]|
In the majority of tested cases, a stationary state is
re= ; > X (10) achieved in stefg5), however, we have observed the algo-
|{|:X[i_m,i+n] =S} (X =S rithm to alternate between states in stgp and cannot rule

o o o ) out other longer periodic behavior. This is a side effect of
Optimizing Eq.(8) is difficult because it is a combinato- ysing tessellation to approximate the partition. We have al-

rial optimization. However, we may find geasonableap-  ways observed that the differences between alternating states
proximation using the property of E¢d): We find forx, the  \yere small.

closest representative, whose substring.js -+ S,. Then we
assignX;=S,. This is expected to work because a longer IV. EXAMPLES
substring specifies a smaller region for eagland the closer

. ... Since only a time series is required in order to apply the
symbols are to the center (_)f the s_ubstrmg, the more S'gn'f'broposed method, we do not have to know the map of the
cant they are expected be in locating

To begin the iteration of Eqg8) and (9) requires an ini- dynamical system. Therefore, it can be used if one recon-

tial set of representatives, and there are many ways that thSI.rUCtS state space by forming an embedding. However, in
can be done. One could t}y random initial representatives tis paper, we use data ;ets generat.efd from known mode]s S0
s LT ' ; ' Hhat we can compare estimated partitions with those obtained
perhaps successive partitioning of the data into regions coqf} the literature
taining equal numbers of data points, then use the means o : : . . )
thesegas?nitial representatives.pHowever, it is better to incor- The first example is the Henon mapr]:
porate some basic dynamical information, for example, we Ugr1 1 -au?+ by,
know that unstable periodic points must have unique peri- = ' (12
odic symbol sequencegl,5]. Hence, a good initial set of
representatives can be obtained by finding, and appropriatelyhere (a,b)=(1.4,0.3. The following calculations take
labeling, the lowest order unstable periodic points. This alse (u;,vy), and use a time series of 10 000 data points.
has the advantage of providing a lower bound on the number In this example, we decided to stop the algorithm when

of partitions, that is, the number of unique symbols required=N\-" ||xi—Rx[i_mi+n1||2/(N—m—n)<(0.05)2. The algorithm

i=m+1

Ut+1 U
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FIG. 1. (Color onling Initial partition d)f_ll,o](S) for the Hénon

map. The symbok shows the fixed point, and + the periodic points  F|G, 2. (Color onling Refining the estimate for a generating

of period 2 which are obtained from the time series using thepartition during iteration, using the Hénon map. Blue and green

method of Auerbaclet al. [28]. Blue and green points indicate the points correspond to symbols 0 and 1, respectively. For each graph,

points which were initially labeled by symbols 0 and 1, the red solid line shows the partition line obtained using the pro-

respectively. posed algorithm, and the magenta dashed line shows the one con-
jectured by Grassberger and Karfgi.

was initialized using the lowest order unstable periodic

points, or a fixed point and a period-2 orbit, which weresymbols only 12 symbols were different between the two

found using the method of Auerbagi al. [28]. (There are  symbol sequences.

more sophisticated methods for detecting the unstable peri- We also tested this partition by comparing the uniqueness

odic points from a time series, such as those given in Ref®f the symbol sequences assigned to unstable periodic points,

[29,30. However, in this case, we did not need to use thenind by comparing the values of the metric entropy and the

because given a time series of length 10 000 the method d@bpological entropy.

Auerbachet al.[28] was able to detect periodic points up to ~ We obtained the unstable periodic points for the Hénon

order 2) The period-1 point was assigned the initial sub-map using the method of Biham and Weng&], and found

string 0.0 and the period-2 points arbitrarily assigned 0.1 anthat this partition encodes unstable periodic points uniquely

1.0, as shown in Fig. 1. Figure 1 also shows the initial parup to period 17.

tition of sets®p_; g(M).

During the iteration, the partition was changed, as shown 13
in Fig. 2. We observed that convergence was not “mono-
tonic,” in the sense that the partitions are not nested, how- 1r
ever, the approximate partition gradually became close tc
that conjectured by Grassberger and Kaf8z When the 0.5t

algorithm stopped, we obtained the partition shown in Fig 3.

The final estimated partition used 883 representatives and th _

length of the substrings was 13. g
To analyze the rate of convergence, we measured twc

gquantities at each iteration: theean error defined as -0.5f

SN ||xt—Rx[t_mvt+n]||2/(N—m—n) and the maximum error

defined as maHoq—Rx[I_mm]Hz. In Fig. 4 we plot these quan- -1t

tities for the length of substring. 'Both of the errors de-

creased, but not always monotonically. —1_.?5 _1' _0:5 0 0'.5 1 15

We compare in Fig. 5 the symbol sequence of each lengtt u
obtained with that generated from the same time series using
the generating partition conjectured by Grassberger and fiG. 3. (Color online Partition 4 estimated using 10 000 data
Kantz [3], who found homoclinic tangencies and connectedyoints generated from the Hénon map. Blue and green points are
some of them to construct the partition. As the length of thepoints in the time series corresponding to symbols 0 and 1, respec-
substrings grew, the symbol sequence obtained came closeti@ely. The red solid line shows the partition line obtained using the
that generated using the partition of Grassberger and Kangzroposed method, and the magenta dashed line shows the generat-
[3]. For substrings of length 13, it was found that of 10 000ing partition conjectured by Grassberger and Kdiiz

016215-4



ESTIMATING A GENERATING PARTITION FROM.. PHYSICAL REVIEW E 70, 016215(2004)

10’ . ; . . .

-2, ‘ ‘ ‘ '
10 y : . - - "85 0 05 , 1 15 2

length of substrings

. L . . FIG. 6. (Color onling Initial partition for the Ikeda map. The

,FlG' 4. Change In error during lteration of the algorithm, the initial substrings were assigned to unstable periodic points up to
Hénon map. The solid and broken lines show the mean and Maxjseriod 2 as shown. Blue and green points correspond to those with
mum errors, respectively. ®y(x)=0 and 1, respectively.

Under the assumption that Pesin’s identity holds, the met[34], we estimated, from the symbol sequence obtained, met-

ric entropy is equal to the sum of positive Lyapunov eXPO-ic antro :
D omE ) py of 0.6223 and topological entropy of 0.6746, re-
nents[8], which is, in this case, 0.6048 using 2 for the Ioga'spectively, both of which agree well with the literature val-

rithmic base[3]. (In what follows, we always use 2 for the ues
logarithmic base when evaluating Lyapunov exponents, met-

ric entropy, and topological entropyror the topological en- The second example is the Ikeda ni3sl:

tropy, the most accurate value in the literature is 0.670 75 Upsq 1 +a(u; cosf— v, sin 6) (13
with a root mean square error of 0.000 (BR]. Using the = a(u. sin 9+ v, cos 6 '
methods of Kennel and Me¢33] and of Hirata and of Mees Yira ( ot )

where §=0.4-b/(1+u?+v?), a=6.0, ando=0.9. We gener-

10° . , , ated time series data of length 10 000.

First the algorithm was initialized by finding the low or-
der unstable periodic points from the time series. We found
unstable periodic orbits of periods 1 and 2 using the method
of Auerbachet al. [28] and assigned substrings as shown in
Fig. 6. We stopped the algorithm when the mean error be-
came less thati0.052, and obtained partitiond shown in
Fig. 7, which looks similar to that in Ref4]. It had the
substrings of length 11 and 1386 representatives. The change
in error is shown in Fig. 8. The mean error decreased mono-
tonically, whereas the maximum error decreased gradually,
but not monotonically.

We tested this partition using three indices: unique coding
for unstable periodic points, the metric entropy, and the to-
pological entropy.

number of different symbols
(=]

10" . . ) . . We calculated the unstable periodic points using the
2 4 6 8 10 12 method of Davidchack and L&B6], and confirmed that this
length of substrings partition encodes the unstable periodic points uniquely up to
FIG. 5. Comparison of the symbol sequence obtained with thaperIOd 8.

generated using the generating partition conjectured by Grassberger T_h,e metric entropy can be compared with the. sum of the
and Kantz[3], the Hénon map. For each length of substring, wePOSitive Lyapunov exponents under the assumption that Pes-
counted the number of symbols in symbol sequence which did nof"'S identity holds[8]. The numerical value for the positive
agree with those assigned by the conjectured generating partitiohYapunov exponent of the lkeda map is known to be 0.726
As the length of the substrings grew, the number of “wrong” sym-[37].

bols, out of 10 000, decreased gradually, indicating that the symbol For the topological entropy, we obtained the theoretical
sequence obtained was close to the symbol sequence generated viglue using the numbers of unstable periodic points listed in
ing the partition of Grassberger and Kantz. Ref. [36]. Let N(p) be the number of fixed points for the
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FIG. 7. (Color onling Partition estimated using 10 000 data  FIG. 9. (Color onling Assigning the initial condition in the op-
points generated from the Ikeda map. The blue and green points agsite way from Fig. 1.
points in the time series encoded using symbols 0 and 1,

respectively. ric entropy of 0.7450 and a topological entropy of 0.8748.

] ] i i These improvements demonstrate that a longer time series
p-time map. The topological entropy is approximated byang |onger substrings give a more accurate estimate of a
1/p log N(p). Averaging over those values obtained for P€-generating partition.

riods between 14 and 22, one would get the estimate of to-
pological entropy 0.8685 with its root mean square 0.0009.V. CONSEQUENCE OF BAD INITIAL REPRESENTATIVES

The methods of Kennel and Meg33] and of Hirata and Unfortunately, sometimes the algorithm fails due to poor

Mees[34] were applied for the symbol sequence obtainedp,gice of labeling of the initial representatives. To make the
from the data, and gave metric entropy of 0.7578 and t0POgependence clear, we again used the data generated from the
logical entropy of 0.8752, respeqtlvely. These estimates havganon map, but this time, we assigned the initial condition
errors of 0.03 and 0.01, respectlvely: . . in the opposite way for period-2 points from that in Sec. IV
We also tested the proposed a!gorlthm using .50 000 pomta:ig 1), as shown in Fig. 9, and applied the same procedure
data of the lkeda map, whose first 10 000 points were thgyith the same parameters. For comparison, we stopped the

same as the previous data. We applied the algorithm with thgyo.oithm when it had attained substrings of length 13. We

stopping criterion attaining substrings of length 15. We con-jpiained the partition shown in Fig. 10.

firmed that the estimated partition could encode the unstable

periodic points uniquely up to period 12, and yielded a met- ¢

10'

0.5f

Iength%f substringss FIG. 10. (Color onling Partition obtained using a different ini-
tial partition. Blue and green points correspond to symbols 0 and 1,
FIG. 8. Change in error during iterations for the Ikeda map. Therespectively. We exchanged the initial substrings for unstable peri-
solid and dashed lines show the mean and maximum errorgdic points of period 2 and attempted to find a generating partition.
respectively.
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10’ . ; . . .

errors

1.5

2 4 6 8 10 12
length of substrings

FIG. 13. (Color onlineg Example of representatives which are
FIG. 11. Change in error when we assign the initial labels forbad|y placed. In this example, the data of the Hénon map, the al-
the representatives as shown in Fig. 9. The solid and broken linegorithm was started with the initial partition in Fig. 9. Marked &y
show the mean and maximum errors, respectively. are the points with substring 010 100.000 0101. These points are in
the three disconnected regions. Averaging over these points gave +,
In the case of the Ikeda map, giving the initial symbols forwhich is their representative.
period-2 points in the opposite way did not make much dif-
ference in the results except for the fact that the regions fog
symbols 0 and 1 were swapped.

orithm’s progresgWhen the algorithm succeeds, we do not
bserve any of the followingy.

One criterion is to check the decrease in errors. When we
chose the poor initial partition for the Hénon map, the mean
error did not decrease satisfactorillfig. 11), because the

As the example of the Hénon map shows, the success ghaximum error returned to the initial level. This suggests
the algorithm always relies on good choice and labeling oknhat the maximum error can be an indicator.
the initial representatives. _ A second criterion is the distribution of the representa-

Failure of the algorithm can be detected easily as distjyes. When the algorithm fails, we tend to find some of the
cussed in Sec. V B. To fix the problem, we first try different yepresentatives are out of the attractor. Before explaining the
labels for the representatives; there is always only a smafleason why, we first compare the distributions. In the first
number of them for any given choice of representatives. Ifyjénon map setting, all the representatives were found to be
relabeling does not solve the problem, then this would sugpn the attractofFig. 12a)]. But in the opposite setting, some
geSt that the number Of representatives iS inSUfﬁCient or thgf the representatives were found to be Off the attrap:f(g
number of Symbols is insufficient. Hence, we ma.y have t012(b)] Thls phenomenon can be exp'ained as fo"ows- In
increase the number of representatives, for example, by ingig. 12b), we observe that one of the representatives that
creasing the length of initial substriigor we may have to  corresponds to a substring 010 100.000 0101 is well outside
increase the number of symbols. the attractor. Figure 13 shows the all data points whose sub-
string is 010 100.000 0101. We can see that these points are
found in three different regions of the attractor that are not

Fortunately, an ill-prepared initial partition can be easily contiguous. This is counter to requirements of 8. These
identified. We propose two ways by which to check the al-points, with the same substring, are not well localized or well

A. Fixing a failure of the initial partition

B. Detecting a failure of the initial partition

1.5 T T T T T 1.5

1 1t FIG. 12. (Color onling Distri-
bution of representativesa) In
the original setting(Fig. 1), all
representatives are located on the
attractor. But in(b), the opposite
setting (Fig. 9), some representa-
tives are located out of the attrac-
tor. This shows that the partition
obtained from the opposite setting

18 . : . : . . is bad.

0.5

15 , ‘
15 -1 -0.5 0 0.5 1 15

016215-7



HIRATA, JUDD, AND KILMINSTER PHYSICAL REVIEW E 70, 016215(2004)

15" "

-15 . d ) —'?.5 -1 -0.5 0 0.5 1 1.5

FIG. 14. (Color onling Estimating a generating partition using ~ FIG. 15. (Color onling Estimating a generating partition using
10 000 point data of the Hénon map, contaminated by 10% Gaus£000 point clean data of the Hénon map. Blue and green dots show
ian noise. Blue and green dots show points with symbols 0 and 190ints with symbols of 0 and 1, respectively. The red solid line
respectively. The red solid line shows the partition line obtainedshows the partition line obtained using the proposed method and the
using the proposed method and, the magenta dashed line shows ti@genta dashed line shows the generating partition conjectured by
generating partition conjectured by Grassberger and K@@tz Grassberger and Kan{3].

retical values 0.60483] and 0.670 7532], respectively. The
represented by one point. Consequently, the measures of gesults in this noisy case are comparable to the results of
ror do not decrease, because these points prevent the errgténnel and Buhl[7]. The proposed method is much better
going to zero. than identifying and labeling unstable periodic points from
the noisy time series, because it is also hard to ensure that
VI. EVALUATION one detects all the unstable periodic points up to a certain
order from a noisy time series.

There are two other methods for estimating a generating The proposed algorithm gave useful results with a short
partition. When a system is given, a commonly used techtime series. We took the first 2000 points of the clean data of
nique is to encode the unstable periodic points up to certaithe Hénon map and applied the algorithm in the same way
order uniquely[4,5]. Recently, Kennel and Buhl7] pro-  we did for the noisy case. The partition obtained is shown in
posed another algorithm for estimating a generating partitiofrig. 15. Out of 2000 symbols, this partition has 12 symbols
from a time series. The proposed method has a rigorous juslifferent from the partition conjectured by Grassberger and
tification, given in the Appendix, but the method of Kennel Kantz[3]. This partition encodes the unstable periodic points
and Buhl[7] does not. uniquely up to period 14. Using this partition, we estimated

The proposed algorithm gives useful results for noisy time0.642 for the metric entropy and 0.684 for the topological
series. We tested the noisy case by adding 10% Gaussi@mtropy, both of which are close to their theoretical values
noise to the 10 000 points data of the Hénon map. Instead @.6048[3] and 0.670 7932], respectively.
detecting the unstable periodic points, we initialized the al- The proposed algorithm needs to assign fewer parameters
gorithm in the following way. First we split the time series at in advance than that of Kennel and Bufl.
the median ofv;. Second we encoded each point with the The proposed algorithm is deterministic, that is, given the
symbol O if itsv, is smaller than the median, and with sym- same initial condition, it gives the same solution. However,
bol 1 otherwise. In this way, we obtained the initial symbol the algorithm of Kennel and Bulil’] uses “differential evo-
sequence. Third we started the algorithm from st@pby  Ilution” [38], a genetic-type algorithm, which is stochastic
classifying points of the time series using their substrings obptimization. Therefore, each application of the algorithm
length 2. We stopped the algorithm when it converged withcan generate a different answer. Differential evolution runs
substrings of length 13. fast in general because it can reduce the number evaluations

The partition obtained from the noisy time series is showrof the cost function$38].
in Fig. 14, which we note is close to the partition conjectured The proposed algorithm runs fast because the cost func-
by Grassberger and Kan{8]. Despite the noise, only 22 tion is simple to solve and we try to avoid evaluating the cost
points out of 10 000 points are labeled differently than thefunction as much as possible. The proposed algorithm needs
partition conjectured by Grassberger and Kantz. It was conto evaluate the cost function only when one considers stop-
firmed that this partition encodes the unstable periodic pointping the algorithm. We tested the speed of the proposed al-
uniquely up to order 15. Using the symbol sequence obgorithm using a computer with CPU Pentinum Il 1 GHz and
tained, we estimated 0.626 for the metric entropy and 0.67256 MB memory. The program was written and run using
for the topological entropy. This agrees well with their theo-mATLAB 6.5. When we used the 10 000 point data of the
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Hénon map, the algorithm took 564 s from st to the . 1
end. When we used the first 2000 points in the above test, theX = I-mm(X)'| = ‘ N (X = yhdu(y)
algorithm took 63 s. The noise did not affect the perfor- K X) St
mance much. When we add 10% Gaussian noise to the 1
10 000 point data in the above test, the algorithm took 589 s. S —— X' = y'du(y)
If we do not require in steg5) that the symbol sequence PPy (X)) O ()
converges completely, then computation is faster. 1
< — x=yld
preaed R
VII. CONCLUSION
We proposed a method for estimating a generating parti- j . diam(@p_y, (X)) dpu(y)
tion from observed time series data generated from an invert- < PLmny( )
ible map. The partition is approximated by tessellating state M(fb[‘_lmyn]()())
space with representatives, that is, points in state space, each a1 ) 1
of which has a distinct substring of a certain length. Using _ (P (X)) diam( D, (X))
our scheme, we stated the problem of finding a generating - M(q)[_—lm ()
partition as finding the minimum discrepancy between a se- ’
ries of points in the data and one specified by a symbol < diam(®p 5, (X)),

sequence and representatives. By solving this minimization
problem approximately using an iterative algorithm, weresulting in
found an estimate for a generating partition.
We applied our method for ti_me seri_e_s of Hér_10n and X! —rE_m’n](x)'| ssupdian(d)f_lm’n](/"()). (A2)
Ikeda maps. Estimates of generating partitions obtained from X
10 000 data points uniquely encoded all periodic points of
order less than 18 for the Hénon map and 9 for the Ikeddherefore, if  lim_..supdiam(@} ;(X))=0,  then
map, respectively. They also gave reasonable values for tHamy_..|x'~r;_ 4(0)'|=0. When [x'-r;_ (0'| <e<1, we

metric and topological entropies. _ have [x' =11, 'P<|X'=r_, 1(x)'|. Therefore, it follows
Details of the proof for the proposed method and imple- ’ ’

: .ok . ) that
mentation for short and noisy time series are discussed else-
where[26]. . . .
||X - r[—m,n](x)”2 = 2 |X| - r[—m,n](x)l|2 < E |XI - r[—m,n](x)||
| |
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Theorem 2 If limy_..supcmllr-kiq(X) =X|=0, then A is
APPENDIX localizing.
Here we briefly describe proof of the theorems. uebe Proof. Let X' be a symbol sequence fere M. Suppose
the invariant measure of the system. there exists y,zeM such that ®ppq(X)=Ppmn(y)

Theorem 1 1If A is localizing, there exists a function =%®-mn(2).
M-mn(X) =T, 0 Such that lim_..SURc mllF [k (¥) =X =0.
Proof. Let X be a symbol sequence that corresponds to ly-2l<ly- rtb[_m,n](y)” +|z- r<1>[_m](y)||

Definer;__ (x) by B
el =ly=ro_, ol +12=ro_, el

1 -
A =2s -r .
w(d [__lm n](X)) q)[_l 1(X) yeu(y)- (A1) WEU[\EﬂW (D['m'“](w)”

For thelth coordinate, we have the following inequalities: By taking the supremum ovar,ze A, we have
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diam® 5, (X)) = sup

ly=4l<2sugw=re_ wl-
y,Ze(I)[__lm’n](X) weM [-m,n)W.

Taking the supremum over all the admissible symbol se
quences, we have

supdiam &% () < 2 supjw - (o n](W)”‘ (A3)
X weM ’
Because syp. y|[w— r(b[_kk](w)” — 0 ask— o, it follows that

lim supdiam®[ 4(X) =0, (A4)

k—oo X

indicating thatA is localizing.

Consequently, when we choose the representatives using

Eq. (A1), condition lim,_..supr(_x(X)=x| =0 is equivalent
to localizing.

Lemma 1 Let My be a subset ofM. If lim_.|x
—I—k(¥)||=0 for everyxe My, then A assigns a unique
symbol sequence to each point bh,.

Proof. Take any two distinct pointg,y e M. Then there
existse>0 such thafjx—y||> e>0. The triangle inequalities
make the following inequalities true:

”r[—k,k](x) - r[—k,k](Y)”
=|(x-y) + {0 = %) = (o (y) = I
=[x = Y| = 1= =) = (P (y) = V)
=[x =yl = a0 =X = g () = vil-

Then for e>0, there existk,; such that ifk=k;, then||x

—I k() < 3€. Similarly, there exist&, such that ifk= ks,
then||y—r[_k’k](y)||<%e. Let ky=maxky,ky}. If k=kg, then it
follows that || () =i (Y)| = 5€>0. As the distance
between rp_y(x) and r_(y) is positive, two points
M-k (X) andr_(y) are different from each other, indicat-
ing thatx andy are assigned different substrings. As any two
points in M, have different substrings, a point M, has its
uniqgue symbol sequence.

Therom 3 If lim}_..SupmlX—r—k(X)[|=0, then A is
generating orv.

Proof. If limy_..SupcmlX—r-k(X)[=0, then lim_.[x
—I'—kk(X)[|=0 for everyx e M. Using lemma 1, the partition
A assigns a unique symbol sequence to each poiriln
meaning that4 is a generating partition ol.

Whenf is ergodic onM, then

N-n
E ”Xt - r[—m,n](xt)”2

t=m+1

. 1
im —
N—oN=—m-n

= f [ = F (O [Pd ().
M

Denote this quantity by 4 [y n)-
Theorem 41f f is ergodic onM and lim_..H 4 - q=0,

then the partitionA is generating oM.
Proof. The following chain of equalities holds:

PHYSICAL REVIEW E 70, 016215(2004)

Ilim f”x‘r[—k,k](X)HZdM(X)

:fll(im||x—r[_k,k](x)||2d,u(x)
lim [x - r[—k,k](X)”ZdM(X)

f{x:klim [IX=r [k OOII=0} k—o

gl
J

where the first equality holds becauseMss bounded, the
inside [x—r_ (X)||? of the integral is bounded, and we can
swap the order of the integral and the limit.

To have the last equality valid, we need

lim [[x = g 0 [Pd (%)
x i e-rpq00l}>0p k=

lim [[x = 1 (0)]Pdu(x) =0,

x: lim [x=r[_y g (l|>0} k—o
Koo '

M({Xillm”)( ~ (X[ >0} =0, (A5)
meaning that
(e lim X = 1y (00 = 0}) = 1. (A6)

Therefore, from lemma 1, there exists a sulggiC M of
full measure such thatl assigns a unique symbol sequence
to each point orM,, indicating thatA is generating orM.

This theorem means that if a partition has the property
that the average distance between a point and its representa-
tive converges to 0, then any two points can be distinguished
from each other with probability 1. Hence §m.H 4

=0 gives a generating partition.

Theorem 5 If lim kﬁxsug(EMHx—rE_k’k](x)H:O, then
Baf-kk— A in the sense that sypainf Ix=y|—0
and sup.s, _,, infycalx-y|—0.

Proof. We first prove sup. Ainfye,:J{A‘[_k'k]||x—y||—>0. We di-
vide A into two sets:ANBa[ i and ANBg - For x
€ ANBp[xK, We have inJeBAv[_kyk]Hx—yH:O. For x
e ANB3 g We haver,, ,4(X) e B[y g because_ ()
is located at the center of the tile includedBn [y ;. There-
fore, forxe AN By, the following inequality stands:

ye BA,[—k,k]|

inf =yl < X =gl (A7)
yeBa[-kk]
Hence,
sup inf [x=y] < suglx—rp_ )] —0, (A8)
xeAye BA,[—k,k] xeA

resulting in the desired relation.

For the second part: Sy&AY[,mlanEA”X'y”HO’ divide
Ba[-kk] iNto two sets:Ba_i N A and By N A Fory
€ Baj—kkNA, there existsxe A such that|x-y||=0. Fory
€ Baf—i NAS, let ¢y (y) be a map oM into {r_, (M)},
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giving the closest representativeytan metric||-||. From the X = g = X = g Ol < suplx = 1]l
triangle inequality, we also havex—y|<|x—c_ Yl ’ xeA ’
*|lc—wk(y) -Vl for everyx  A. Becausegyx(y) is the clos- By taking the supremum oveB, (g, We have
est representative toy, |cxi(y)-yll<|z-y| for z

* ; * sup inf|x-
€ {r[—k,k](M)}- Especially [lcyq(y) -yl < ”r[—k,k](y) -yl yEBAV[F_)kvk] xEA” A
Hence, the following inequality is true foxe A andy _ x N
. < sup {supX-—rr_ q()| + |- -
€ BA,[—k,k]- YEBA’[F_)k'k]{XEAFH [ k,k]( )” ” [ k,k](Y) y”}
. = SUB|X_ Mg OOl + sup I i) =
inf =yl < =Yl = Ix = eI + lleg-iay) = Vi X Y<BAL-Kid

) < 2sufx = r_ )| — 0.
< [Ix = eI + [Irzigg ) = V- XM
Therefore, the statement holds.

) ) Corollary L If ®, is localizing, thenB,[_—A for
Becausey e By, the representative_ () is the one  g5chac A

whose tile is included iBa -y As X e A is arbitrary, we Proof. Using theorem 1, the localizing property means
can choose whose representative @ (). Then, the first  that lim_..supcwllrj_x(¥)—X|=0. From Theorem 5, the
term has the upper bound, statement should follow.
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